Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Nat Commun ; 14(1): 3500, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-20236856

ABSTRACT

The SARS-CoV-2 Omicron subvariants BA.1 and BA.2 exhibit reduced lung cell infection relative to previously circulating SARS-CoV-2 variants, which may account for their reduced pathogenicity. However, it is unclear whether lung cell infection by BA.5, which displaced these variants, remains attenuated. Here, we show that the spike (S) protein of BA.5 exhibits increased cleavage at the S1/S2 site and drives cell-cell fusion and lung cell entry with higher efficiency than its counterparts from BA.1 and BA.2. Increased lung cell entry depends on mutation H69Δ/V70Δ and is associated with efficient replication of BA.5 in cultured lung cells. Further, BA.5 replicates in the lungs of female Balb/c mice and the nasal cavity of female ferrets with much higher efficiency than BA.1. These results suggest that BA.5 has acquired the ability to efficiently infect lung cells, a prerequisite for causing severe disease, suggesting that evolution of Omicron subvariants can result in partial loss of attenuation.


Subject(s)
COVID-19 , Animals , Female , Mice , Ferrets , SARS-CoV-2 , Mice, Inbred BALB C , Lung
2.
PLoS Biol ; 21(5): e3002130, 2023 05.
Article in English | MEDLINE | ID: covidwho-20236168

ABSTRACT

Viruses, the diseases they can trigger, and the possible associated societal disaster represent different entities. To engage with the complexities of viral pandemics, we need to recognize each entity by using a distinctive name.


Subject(s)
Disasters , Viruses , Pandemics
4.
J Gen Virol ; 104(4)2023 04.
Article in English | MEDLINE | ID: covidwho-2305800

ABSTRACT

The family Coronaviridae includes viruses with positive-sense RNA genomes of 22-36 kb that are expressed through a nested set of 3' co-terminal subgenomic mRNAs. Members of the subfamily Orthocoronavirinae are characterized by 80-160 nm diameter, enveloped virions with spike projections. The orthocoronaviruses, severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome-related coronavirus are extremely pathogenic for humans and in the last two decades have been responsible for the SARS and MERS epidemics. Another orthocoronavirus, severe acute respiratory syndrome coronavirus 2, was responsible for the recent global COVID-19 pandemic. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Coronaviridae which is available at www.ictv.global/report/coronaviridae.


Subject(s)
COVID-19 , Coronaviridae , Viruses , Humans , Coronaviridae/genetics , Pandemics , Viruses/genetics , Virion/genetics , Genome, Viral , Virus Replication
5.
Vaccine ; 2023.
Article in English | EuropePMC | ID: covidwho-2272790

ABSTRACT

Broadly protective coronavirus vaccines are an important tool for protecting against future SARS-CoV-2 variants and could play a critical role in mitigating the impact of future outbreaks or pandemics caused by novel coronaviruses. The Coronavirus Vaccines Research and Development (R&D) Roadmap (CVR) is aimed at promoting the development of such vaccines. The CVR, funded by the Bill & Melinda Gates Foundation and The Rockefeller Foundation, was generated through a collaborative and iterative process, which was led by the Center for Infectious Disease Research and Policy (CIDRAP) at the University of Minnesota and involved 50 international subject matter experts and recognized leaders in the field. This report summarizes the major issues and areas of research outlined in the CVR and identifies high-priority milestones. The CVR covers a 6-year timeframe and is organized into five topic areas: virology, immunology, vaccinology, animal and human infection models, and policy and finance. Included in each topic area are key barriers, gaps, strategic goals, milestones, and additional R&D priorities. The roadmap includes 20 goals and 86 R&D milestones, 22 of which are ranked as high priority. By identifying key issues, and milestones for addressing them, the CVR provides a framework to guide funding and research campaigns that promote the development of broadly protective coronavirus vaccines.

6.
STAR Protoc ; 4(2): 102171, 2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2288848

ABSTRACT

Here, we detail the immunization of mice with a sublethal dose of MERS-CoV or two doses of replication-incompetent alphavirus replicon particles expressing MERS-CoV spike protein. We then describe steps to determine the outcome of immunization by challenging immunized mice with a lethal dose of MERS-CoV, as well as by detecting virus-specific neutralizing antibody and virus-specific T cell response via neutralization assay and flow cytometry, respectively. This protocol can be used to evaluate other CoV infections or vaccine-induced immune responses. For complete details on the use and execution of this protocol, please refer to Zheng et al. (2021).1.

7.
EMBO Mol Med ; 15(5): e17580, 2023 05 08.
Article in English | MEDLINE | ID: covidwho-2259755

ABSTRACT

Alongside vaccines, antiviral drugs are becoming an integral part of our response to the SARS-CoV-2 pandemic. Nirmatrelvir-an orally available inhibitor of the 3-chymotrypsin-like cysteine protease-has been shown to reduce the risk of progression to severe COVID-19. However, the impact of nirmatrelvir treatment on the development of SARS-CoV-2-specific adaptive immune responses is unknown. Here, by using mouse models of SARS-CoV-2 infection, we show that nirmatrelvir administration blunts the development of SARS-CoV-2-specific antibody and T cell responses. Accordingly, upon secondary challenge, nirmatrelvir-treated mice recruited significantly fewer memory T and B cells to the infected lungs and mediastinal lymph nodes, respectively. Together, the data highlight a potential negative impact of nirmatrelvir treatment with important implications for clinical management and might help explain the virological and/or symptomatic relapse after treatment completion reported in some individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Antibodies, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Lactams , Nitriles , Immunity
8.
Nat Rev Microbiol ; 21(3): 125-126, 2023 03.
Article in English | MEDLINE | ID: covidwho-2276223
9.
Vaccine ; 41(13): 2101-2112, 2023 03 24.
Article in English | MEDLINE | ID: covidwho-2272791

ABSTRACT

Broadly protective coronavirus vaccines are an important tool for protecting against future SARS-CoV-2 variants and could play a critical role in mitigating the impact of future outbreaks or pandemics caused by novel coronaviruses. The Coronavirus Vaccines Research and Development (R&D) Roadmap (CVR) is aimed at promoting the development of such vaccines. The CVR, funded by the Bill & Melinda Gates Foundation and The Rockefeller Foundation, was generated through a collaborative and iterative process, which was led by the Center for Infectious Disease Research and Policy (CIDRAP) at the University of Minnesota and involved 50 international subject matter experts and recognized leaders in the field. This report summarizes the major issues and areas of research outlined in the CVR and identifies high-priority milestones. The CVR covers a 6-year timeframe and is organized into five topic areas: virology, immunology, vaccinology, animal and human infection models, and policy and finance. Included in each topic area are key barriers, gaps, strategic goals, milestones, and additional R&D priorities. The roadmap includes 20 goals and 86 R&D milestones, 26 of which are ranked as high priority. By identifying key issues, and milestones for addressing them, the CVR provides a framework to guide funding and research campaigns that promote the development of broadly protective coronavirus vaccines.


Subject(s)
COVID-19 , Vaccines , Animals , Humans , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Pandemics/prevention & control , Research
10.
Annu Rev Med ; 73: 65-80, 2022 01 27.
Article in English | MEDLINE | ID: covidwho-2286258

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has resulted in a pandemic that has had widespread effects on human activities. The clinical presentation of severe COVID-19 includes a broad spectrum of clinical disease, most notably acute respiratory distress syndrome, cytokine release syndrome (CRS), multiorgan failure, and death. Direct viral damage and uncontrolled inflammation have been suggested as contributory factors in COVID-19 disease severity. The COVID-19 pandemic has emphasized the critical role of an effective host immune response in controlling a virus infection and demonstrated the devastating effect of immune dysregulation. Understanding the nature of the immune response to SARS-CoV-2 pathogenesis is key to developing effective treatments for COVID-19. Here, we describe the nature of the dysregulated host immune response in COVID-19, identify potential mechanisms involved in CRS, and discuss potential strategies that can be used to manage immune dysregulation in COVID-19.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Humans , Inflammation , Pandemics , SARS-CoV-2
11.
Ann N Y Acad Sci ; 1521(1): 46-66, 2023 03.
Article in English | MEDLINE | ID: covidwho-2228475

ABSTRACT

Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , SARS-CoV-2 , Positive-Strand RNA Viruses , Antiviral Agents/therapeutic use , Pandemics , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/drug therapy
12.
Cell Res ; 2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2237052
13.
J Med Virol ; 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2233227

ABSTRACT

SARS-CoV-2 NSP12, the viral RNA-dependent RNA polymerase (RdRp), is required for viral replication and is a therapeutic target to treat COVID-19. To facilitate research on SARS-CoV-2 NSP12 protein, we developed a rat monoclonal antibody (CM12.1) against the NSP12 N-terminus that can facilitate functional studies. Immunoblotting and immunofluorescence assay (IFA) confirmed the specific detection of NSP12 protein by this antibody for cells overexpressing the protein. Although NSP12 is generated from the ORF1ab polyprotein, IFA of human autopsy COVID-19 lung samples revealed NSP12 expression in only a small fraction of lung cells including goblet, club-like, vascular endothelial cells, and a range of immune cells, despite wide-spread tissue expression of spike protein antigen. Similar studies using in vitro infection also generated scant protein detection in cells with established virus replication. These results suggest that NSP12 may have diminished steady-state expression or extensive posttranslation modifications that limit antibody reactivity during SARS-CoV-2 replication.

14.
NPJ Vaccines ; 7(1): 169, 2022 Dec 19.
Article in English | MEDLINE | ID: covidwho-2185870

ABSTRACT

The SARS-CoV-2 Omicron variant harbors more than 30 mutations in its spike (S) protein. Circulating Omicron subvariants, particularly BA5 and other variants of concern (VOCs), show increased resistance to COVID-19 vaccines that target the original S protein, calling for an urgent need for effective vaccines to prevent multiple SARS-CoV-2 VOCs. Here, we evaluated the neutralizing activity and protection conferred by a BA1-S subunit vaccine when combined with or used as booster doses after, administration of wild-type S protein (WT-S). A WT-S/BA1-S cocktail, or WT-S prime and BA1-S boost, induced significantly higher neutralizing antibodies against pseudotyped Omicron BA1, BA2, BA2.12.1, and BA5 subvariants, and similar or higher neutralizing antibodies against the original SARS-CoV-2, than the WT-S protein alone. The WT-S/BA1-S cocktail also elicited higher or significantly higher neutralizing antibodies than the WT-S-prime-BA1-S boost, WT-S alone, or BA1-S alone against pseudotyped SARS-CoV-2 Alpha, Beta, Gamma, and Delta VOCs, and SARS-CoV, a closely related beta-coronavirus using the same receptor as SARS-CoV-2 for viral entry. By contrast, WT-S or BA1-S alone failed to induce potent neutralizing antibodies against all these viruses. Similar to the WT-S-prime-BA1-S boost, the WT-S/BA1-S cocktail completely protected mice against the lethal challenge of a Delta variant with negligible weight loss. Thus, we have identified an effective vaccination strategy that elicits potent, broadly, and durable neutralizing antibodies against circulating SARS-CoV-2 Omicron subvariants, other VOCs, original SARS-CoV-2, and SARS-CoV. These results will provide useful guidance for developing efficacious vaccines that inhibit current and future SARS-CoV-2 variants to control the COVID-19 pandemic.

15.
mBio ; 14(1): e0313622, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2193470

ABSTRACT

Coronaviruses (CoVs) of genera α, ß, γ, and δ encode proteins that have a PDZ-binding motif (PBM) consisting of the last four residues of the envelope (E) protein (PBM core). PBMs may bind over 400 cellular proteins containing PDZ domains (an acronym formed by the combination of the first letter of the names of the three first proteins where this domain was identified), making them relevant for the control of cell function. Three highly pathogenic human CoVs have been identified to date: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. The PBMs of the three CoVs were virulence factors. SARS-CoV mutants in which the E protein PBM core was replaced by the E protein PBM core from virulent or attenuated CoVs were constructed. These mutants showed a gradient of virulence, depending on whether the alternative PBM core introduced was derived from a virulent or an attenuated CoV. Gene expression patterns in the lungs of mice infected with SARS-CoVs encoding each of the different PBMs were analyzed by RNA sequencing of infected lung tissues. E protein PBM of SARS-CoV and SARS-CoV-2 dysregulated gene expression related to ion transport and cell homeostasis. Decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA, essential for alveolar edema resolution, was shown. Reduced CFTR mRNA levels were associated with edema accumulation in the alveoli of mice infected with SARS-CoV and SARS-CoV-2. Compounds that increased CFTR expression and activity, significantly reduced SARS-CoV-2 growth in cultured cells and protected against mouse infection, suggesting that E protein virulence is mediated by a decreased CFTR expression. IMPORTANCE Three highly pathogenic human CoVs have been identified: SARS-CoV, MERS-CoV, and SARS-CoV-2. The E protein PBMs of these three CoVs were virulence factors. Gene expression patterns associated with the different PBM motifs in the lungs of infected mice were analyzed by deep sequencing. E protein PBM motif of SARS-CoV and SARS-CoV-2 dysregulated the expression of genes related to ion transport and cell homeostasis. A decrease in the mRNA expression of the cystic fibrosis transmembrane conductance regulator (CFTR), which is essential for edema resolution, was observed. The reduction of CFTR mRNA levels was associated with edema accumulation in the lungs of mice infected with SARS-CoV-2. Compounds that increased the expression and activity of CFTR drastically reduced the production of SARS-CoV-2 and protected against its infection in a mice model. These results allowed the identification of cellular targets for the selection of antivirals.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , Animals , Mice , Humans , SARS-CoV-2/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Lung/metabolism , RNA, Messenger
16.
Theranostics ; 12(10): 4779-4790, 2022.
Article in English | MEDLINE | ID: covidwho-2203050

ABSTRACT

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuing to spread globally, contributing to the persistence of the COVID-19 pandemic. Increasing resources have been focused on developing vaccines and therapeutics that target the Spike glycoprotein of SARS-CoV-2. Recent advances in microfluidics have the potential to recapitulate viral infection in the organ-specific platforms, known as organ-on-a-chip (OoC), in which binding of SARS-CoV-2 Spike protein to the angiotensin-converting enzyme 2 (ACE2) of the host cells occurs. As the COVID-19 pandemic lingers, there remains an unmet need to screen emerging mutations, to predict viral transmissibility and pathogenicity, and to assess the strength of neutralizing antibodies following vaccination or reinfection. Conventional detection of SARS-CoV-2 variants relies on two-dimensional (2-D) cell culture methods, whereas simulating the micro-environment requires three-dimensional (3-D) systems. To this end, analyzing SARS-CoV-2-mediated pathogenicity via microfluidic platforms minimizes the experimental cost, duration, and optimization needed for animal studies, and obviates the ethical concerns associated with the use of primates. In this context, this review highlights the state-of-the-art strategy to engineer the nano-liposomes that can be conjugated with SARS-CoV-2 Spike mutations or genomic sequences in the microfluidic platforms; thereby, allowing for screening the rising SARS-CoV-2 variants and predicting COVID-19-associated coagulation. Furthermore, introducing viral genomics to the patient-specific blood accelerates the discovery of therapeutic targets in the face of evolving viral variants, including B1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), c.37 (Lambda), and B.1.1.529 (Omicron). Thus, engineering nano-liposomes to encapsulate SARS-CoV-2 viral genomic sequences enables rapid detection of SARS-CoV-2 variants in the long COVID-19 era.


Subject(s)
COVID-19 , Coronavirus Infections , Pneumonia, Viral , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/complications , COVID-19/diagnosis , Coronavirus Infections/prevention & control , Genomics , Humans , Liposomes , Microfluidics , Mutation , Pandemics/prevention & control , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Post-Acute COVID-19 Syndrome
17.
iScience ; : 105690, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2131222

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) have shown resistance to vaccines targeting the original virus strain. An mRNA vaccine encoding the spike protein of Omicron BA1 (BA1-S-mRNA) was designed, and its neutralizing activity, with or without the original receptor-binding domain (RBD)-mRNA, was tested against SARS-CoV-2 VOCs. First-dose of BA1-S-mRNA followed by two-boosts of RBD-mRNA elicited potent neutralizing antibodies (nAbs) against pseudotyped and authentic original SARS-CoV-2; pseudotyped Omicron BA1, BA2, BA2.12.1 and BA5 subvariants, and Alpha, Beta, Gamma and Delta VOCs; authentic Omicron BA1 subvariant and Delta VOC. By contrast, other vaccination strategies, including RBD-mRNA first-dose plus BA1-S-mRNA two-boosts, RBD-mRNA or BA1-S-mRNA three-doses, or their combinations, failed to elicit high nAb titers against all of these viruses. Overall, this vaccination strategy was effective for inducing broadly and potent nAbs against multiple SARS-CoV-2 VOCs, particularly Omicron BA5, and may guide the rational design of next-generation mRNA vaccines with greater efficacy against future variants.

18.
JCI Insight ; 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2117979

ABSTRACT

Loss of olfactory function has been commonly reported in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections. Recovery from anosmia is not well understood. Previous studies showed that sustentacular cells, and occasionally, olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) are infected in SARS-CoV-2-infected patients and experimental animals. Here, we show that SARS-CoV-2 infection of sustentacular cells induces inflammation characterized by infiltration of myeloid cells to the olfactory epithelium and variably increased expression of proinflammatory cytokines. We observed widespread damage to, and loss of cilia on, OSNs, accompanied by downregulation of olfactory receptors and signal transduction molecules involved in olfaction. A consequence of OSN dysfunction was a reduction in the number of neurons in the olfactory bulb expressing tyrosine hydroxylase, consistent with reduced synaptic input. Resolution of the infection, inflammation, and olfactory dysfunction occurred over 3-4 weeks following infection in most but not all animals. We also observed similar patterns of OE infection and anosmia/hyposmia in mice infected with other human coronaviruses such as SARS-CoV and MERS-CoV. Together, these results define the downstream effects of sustentacular cell infection and provide insight into olfactory dysfunction in COVID-19-associated anosmia.

19.
Proc Natl Acad Sci U S A ; 119(42): e2202871119, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2062401

ABSTRACT

COVID-19 is the latest zoonotic RNA virus epidemic of concern. Learning how it began and spread will help to determine how to reduce the risk of future events. We review major RNA virus outbreaks since 1967 to identify common features and opportunities to prevent emergence, including ancestral viral origins in birds, bats, and other mammals; animal reservoirs and intermediate hosts; and pathways for zoonotic spillover and community spread, leading to local, regional, or international outbreaks. The increasing scientific evidence concerning the origins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is most consistent with a zoonotic origin and a spillover pathway from wildlife to people via wildlife farming and the wildlife trade. We apply what we know about these outbreaks to identify relevant, feasible, and implementable interventions. We identify three primary targets for pandemic prevention and preparedness: first, smart surveillance coupled with epidemiological risk assessment across wildlife-livestock-human (One Health) spillover interfaces; second, research to enhance pandemic preparedness and expedite development of vaccines and therapeutics; and third, strategies to reduce underlying drivers of spillover risk and spread and reduce the influence of misinformation. For all three, continued efforts to improve and integrate biosafety and biosecurity with the implementation of a One Health approach are essential. We discuss new models to address the challenges of creating an inclusive and effective governance structure, with the necessary stable funding for cross-disciplinary collaborative research. Finally, we offer recommendations for feasible actions to close the knowledge gaps across the One Health continuum and improve preparedness and response in the future.


Subject(s)
COVID-19 , Chiroptera , One Health , Animals , Animals, Wild , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control , SARS-CoV-2 , Zoonoses/epidemiology , Zoonoses/prevention & control
20.
PLoS Pathog ; 18(9): e1010782, 2022 09.
Article in English | MEDLINE | ID: covidwho-2039444

ABSTRACT

Safe, passive immunization methods are required against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants. Immunization of chickens with antigen is known to induce specific IgY antibodies concentrated in the egg yolk and has a good safety profile, high yield of IgY per egg, can be topically applied, not requiring parenteral delivery. Our data provide the first evidence of the prophylactic efficacy of Immunoglobulin Y antibodies against SARS-CoV-2 in mice. Lohmann hens were injected with recombinant SARS-CoV-2 RBD protein; IgY-Abs were extracted from the eggs and characterized using SDS-PAGE. Antiviral activity was evaluated using plaque reduction neutralization tests. In additional experiments, IgY-RBD efficacy was examined in mice sensitized to SARS-CoV-2 infection by transduction with Ad5-hACE2 (mild disease) or by using mouse-adapted virus (severe disease). In both cases, prophylactic intranasal administration of IgY-Abs reduced SARS-CoV-2 replication, and reduced morbidity, inflammatory cell infiltration, hemorrhage, and edema in the lungs and increased survival compared to control groups that received non-specific IgY-Abs. These results indicate that further evaluation of IgY-RBD antibodies in humans is warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , Antiviral Agents , COVID-19/prevention & control , Chickens , Female , Humans , Immunoglobulins , Mice
SELECTION OF CITATIONS
SEARCH DETAIL